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NUMERICAL SIMULATION OF A TURBULENT THERMAL

UDC 532.517.4I. A. Chuprin and M. D. Shcherbin

Ascent of a large-scale thermal in a standard atmosphere is calculated with the use of the Reynolds
equations and the k model of turbulence, which takes into account temperature inhomogeneity and
vorticity of the flow, and the Euler equations. Results of numerical calculations of a flow examined
experimentally are presented. Gas-dynamic and turbulent flow parameters obtained in calculations
and experiments are compared.
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A large number of papers dealing with numerical simulation of the development of large-scale thermals in
the atmosphere have been published. The Reynolds equations were used in [1–6] to describe flow evolution. Various
models of turbulent transfer were used to take into account dissipative processes in the thermal: rather simple
models, where the coefficients of turbulent viscosity and thermal conductivity were set with the help of effective
Reynolds and Prandtl numbers constant over the flow field [1–4], and more complicated models, such as the standard
(k–ε) model [5] and (k–ε) model with allowance for buoyancy forces and flow anisotropy in the thermal [6]. In [7],
the flow was simulated using the Euler equations, but it was assumed that scheme viscosity allows for turbulent-
transfer processes. The calculation results were compared with data for a cloud formed in the case of a strong
explosion in the atmosphere (height of ascent, horizontal size).

Despite the versatile approaches to numerical simulation (see, e.g., [3, 4, 7–9]), the structural features of the
flow in an ascending thermal, which allow its identification at the late stage of development as a floating vortex ring
observed under real conditions, were not considered in [1–7]. The correctness of turbulence models used to describe
this class of phenomena was not examined either, which can be done by numerically calculating the development
of a thermal for which experimental data are available. The latter can be a thermal formed by detonation of a
methane–oxygen mixture in the atmosphere, for which experimental data from averaged and spectral characteristics
of turbulence were obtained in [10] as the thermal passed through a system of gauges.

Darintsev et al. [11], based on the analysis [12] of special features of turbulent transfer in a vortex, proposed to
use the k model, which explicitly takes into account suppression of turbulent heat and momentum fluxes toward the
center of gas rotation, to describe the structure of the buoyant thermal. From the physical viewpoint, suppression
of turbulent flows in the vortex is caused by energy consumption for the work against centrifugal forces [12]. Data
on the formation of a floating vortex ring [11] could be obtained as a result of a rather correct calculation of the
early stage of formation of vortex motion due to the Bjerknes effect [13]. This stage was described by the Euler
equations with the use of a numerical method with low scheme viscosity [14, 15]. At the stage of a developed vortex
flow, the thermal was calculated on the basis of the k model of turbulence, and the numerical method proposed in
[8] was used to solve the Reynolds equations.

The studies of [16, 17] showed that the governing factor in the description of ascent of heated gas volumes
in the field of the gravity force is the correct allowance for the processes of generation and transfer of flow vorticity.
Turbulence of the medium for this class of flows accompanied by the formation of a floating vortex ring is not a
factor determining the character of motion. For this reason, it was proposed [16, 17] to describe the evolution of
heated gas volumes in the atmosphere by the Euler equations with the use of the numerical method developed in
[14, 15].
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The results presented in [11, 16] allow us to trace the process of transformation of the initially spherical
thermals into a floating vortex ring. The formation of a vortex-flow core is shown, where the gas motion occurs in
the same manner as that in a rotating solid body. The method proposed was used in [16] to describe the flow of
detonation products of an oxygen–methane mixture. The flow parameters were written in the locally equilibrium
approximation. The calculation results of external geometric characteristics of the thermal and turbulence param-
eters are in satisfactory agreement with experimental data. This method was used to calculate the development of
clouds formed by strong explosions in the atmosphere in [17] and to calculate the development of vertical vortices
in the atmosphere in [18]. At the same time, determination of turbulence parameters in buoyant thermals is of
independent interest, since it is the necessary condition for solving a number of applied problems. This necessitates
the improvement of the method proposed in [16, 17] to describe the development of heated gas volumes, in the
aspect concerning the allowance for turbulent transfer.

Important features of the numerical method used in [11, 16, 17] are its high-order accuracy and monotonicity.
Below, we consider the application of this method for the description of evolution of thermal structures in the
atmosphere on the basis of solving the Reynolds equations; in the development of the method, the processes of
generation and transfer of flow vorticity were described with the use of the model of turbulent transfer, which takes
into account the special features of the vortex flow. To study the influence of turbulence on gas-dynamic parameters
of the flow in the thermal, its structure was also analyzed using the solution of the Euler equations.

1. Formulation of the Problem. The turbulent flow in the thermal was calculated using the model of
[11] with certain modifications considered below, which were introduced into equations and relations of the model
to take into account the results of numerical simulation of the series of experiments [10].

The problem is solved in a cylindrical coordinate system with the z axis directed vertically. The Reynolds
equations in this coordinate system take the form
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Here ρ is the density, u, v, and w are the averaged components of velocity along the axes r and z and the angle,
T is the temperature, p = ρRT is the pressure, R is the gas constant, t is the time, cv is the heat capacity, u′, v′,
w′, and T ′ are the fluctuations of velocity components and temperature, and divV = ∂u/∂r+ ∂v/∂z+ u/r. Based
on the Boussinesq hypothesis [19], the second-order moments in (1.1) are closed as follows:
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Here k is the turbulent kinetic energy, Q′ and Q are quantities that should be replaced by T ′, T ′2, or k′

= (u′2 + v′2 + w′2)/2 and T , 〈T ′2〉, or k, respectively.
In (1.2), we introduced coefficients of turbulent transfer of momentum νt and scalar quantities νQ:

νt = BLnk
1/2, νQ = BQLnk

1/2.

Here B = 0.7, BQ = B/Pr t, Pr t = 0.8 is the turbulent Prandtl number [20], and Ln is the scale of turbulence. The
value of k is calculated using the k model of turbulence.

To take into account anisotropy of turbulent transfer in the floating vortex ring, the scales Ln and Ls are
determined at each point in the radial direction and in the direction tangential to the streamlines. In [11], in
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determining the relation between Ln and Ls, the results of [12] were used, which show that the expression for radial
turbulent fluxes in the vortex core should be supplemented by the correction factor 1/f0:

f0 = 1 + β1τ
2 1
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+ β2τ

2 2Vs
r
| rotV |.

Here τ = ALs/k
1/2 is the time scale of turbulence, r is the radius of curvature of the streamlines in the vortex,

| rotV | = |∂u/∂z−∂v/∂r|, β1 = 0.5, β2 = 0.5, and Vs is the flow velocity tangential to the streamline in the vortex.
It was assumed in [11] that Ls/Ln = f0, and the scale Ls was set to be proportional to the vortex size.

The calculations with the use of this relation for scales showed that the choice of the value of the parameter τ
as in [11] leads to unlimited suppression of turbulence in the floating vortex ring. Therefore, the parameter τ here
is related to characteristic flow parameters. In accordance with [10], it is assumed that velocity fluctuations reach
20% of azimuthal velocity in the vortex. Then, we have τ = 0.05R/(0.2Vs), where Ls = 0.05R (R is the radius
of the floating vortex ring). The chosen value of Ls corresponds to the value used in [11] and to the experimental
data of [10]. In addition, since the turbulent fluxes of heat and momentum are proportional to the squared mixing
length [19, 21], we used Ls/Ln = f

1/2
0 in the present work.

The equations for the turbulent kinetic energy and temperature fluctuations have the form

∂

∂t
(ρk) +

1
r

∂

∂r
(rρuk + rρ〈u′k′〉) +

∂

∂z
(ρvk + ρ〈u′k′〉) + ρε+ ρΦ = 0,

(1.3)
∂

∂t
(ρ〈T ′2〉) +

1
r

∂

∂r
(rρu〈T ′2〉+ rρ〈u′T ′2〉) +

∂

∂z
(ρv〈T ′2〉+ ρ〈v′T ′2〉) + ρεθ + ρΦθ = 0.

Here

Φ =
2
3
k divV − νt

{
2
[(∂u
∂r

)2

+
(∂v
∂z

)2

+
(u
r

)2]
+
(∂v
∂r

+
∂u

∂z

)2

− 2
3

(divV )2
}

is the generation of turbulent kinetic energy, ε = BDk
3/2/Ls is the dissipation rate of turbulent kinetic energy,

Φθ = νQ(∂T/∂r)2 + νQ(∂T/∂z)2 is the generation of temperature fluctuations, and εθ = SBDk
1/2〈T ′2〉/Ls is the

dissipation rate of temperature fluctuations (S = 1 and BD = 0.225 [20]).
The initial conditions for the thermal are set as follows: T (r, z) = T0 for (r2 + z2)1/2 6 R0 (R0 and T0 are

the initial radius and temperature of the thermal), T (r, z) = Ta(z) for (r2 + z2)1/2 > R0 (Ta is the temperature
of the standard atmosphere at a height z), P (r, z) = Pa(z) (Pa is the pressure of the standard atmosphere at a
height z), and u = v = 0 in the entire computational domain. The initial values for the turbulent kinetic energy
k0 and intensity of temperature fluctuations 〈T ′2〉0 were assumed to be equal to low background values. Some
arbitrariness in setting k0 and 〈T ′2〉0 is explained by the extremely weak dependence of the solutions of Eqs. (1.3)
on these values, which was verified in test calculations.

At the axis of symmetry of the flow, we impose the boundary conditions
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and at the external boundaries of the computational domain, we set the conditions

u = v = 0, ρ = ρa, T = Ta,

where ρa and Ta are the density and temperature of the standard atmosphere at the corresponding height.
2. Numerical Implementation of the Mathematical Model. Since the formation of the flow structure

in the thermal and in the explosion cloud, as is shown in [11, 16, 17], is primarily determined by the processes of
generation and transfer of vorticity, the method of the numerical solution of the Reynolds equations should take
into account these processes. This requirement is satisfied, in particular, by the method of splitting in terms of
physical processes [22]. This means that different methods will be used in flow simulation in the thermal to take
into account convective transfer (generation and transfer of vorticity), viscous dissipation, and thermal conductivity
caused by turbulence, and also generation and dissipation of turbulence.

Convective transfer can be most accurately calculated by explicit numerical methods, since they admit
nonlinear approximation of high-order accuracy, which cannot be reached in implicit methods based on linear
approximation. In the present work, like in [11, 16, 17], convective transfer is simulated by the FCT method
[14, 15].
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Fig. 1. Fields of temperature (a, b, and c) and vorticity (d, e, and f) (calculation with allowance for
turbulence) for t = 2 (a and d), 15 (b and e), and 50 sec (c and f).

In modeling diffusion processes, the explicit scheme of [23] is supposed to be used, since the restriction on
the Courant number in calculating diffusion processes in the thermal is not too stringent for the currently used
grids. Within the framework of the method of splitting in terms of physical processes, generation and dissipation
of turbulent parameters are described by ordinary differential equations admitting analytical solutions. Thus, a
simple and effective method for calculating the turbulent flow in the thermal is proposed.

3. Calculation Results for a Large-Scale Thermal. The initial radius of the thermal was R0 = 1000 m,
the height was H0 = 3000 m, and the temperature was T0 = 3000 K. The calculations were performed on a uniform
grid 100× 200, which moved so that the buoyant thermal was located in the center of the computational domain;
the initial size of the latter was four times the thermal size.

The experimental data for flows that are rather good approximations for thermals show that an important
feature of such flows is the formation of a floating vortex ring from the initially spherical volume of the hot gas [24].
Therefore, we propose to analyze the of numerical simulation of thermals and also the possible effect of turbulence
on the flow primarily by studying the time-space structure of the vortex ring. According to the definition proposed
in [24], the vortex ring of the thermal is a toroidal region in which the hottest air is located and the velocity
distribution is similar to that observed in rotation of a solid body. This definition will be justified below.

Let us consider the process of formation of the floating vortex ring by the example of a calculation with the
use of the Reynolds equations. When the thermal floats up, a vortex sheet is formed at its boundary; according
to the Bjerknes theorem, this vortex sheet arises because of nonparallel gradients of density and pressure at the
thermal–atmosphere boundary. Initially, the vortex sheet has a spherical shape, which is seen from Fig. 1d, which
shows the vorticity field for t = 2 sec. The corresponding temperature field is shown in Fig. 1a. Later on, the
vortex sheet is transformed into the vortex ring. Figure 1b and e shows the flow pattern for t = 15 sec, when the
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Fig. 3. Dependence of Θ(t): the solid and dashed curves refer to the gas-dynamic calculation and calculation
with allowance for turbulence, respectively.

Fig. 4. Height of thermal ascent versus time: the solid and dashed curves refer to the gas-dynamic calcu-
lation and calculation with allowance for turbulence, respectively.

transformation mentioned above is not yet completed. By the time t = 50 sec (Fig. 1c and f), the floating vortex
ring is formed, since the regions of hot air and intense vortex motion become congruent and acquire a circular form.

We consider the ring structure in more detail. Figure 2 shows the profiles of temperature, vertical velocity,
and vorticity along the horizontal straight line passing through the point (r0, z0) with the maximum value of
vorticity, which are normalized to the corresponding maximum values at the time t = 50 sec. It is assumed that
the point (r0, z0) is the center of the core of the floating vortex ring. It follows from Fig. 2 that the above-given
definition of the floating vortex ring of the thermal is justified. We determine the radius of the vortex ring as

R = (rmin + rmax)/2,

where rmin and rmax are the horizontal coordinates of flow points where the vertical component of velocity reaches
the minimum and maximum values, respectively. It is convenient to use the quantity R to specify the scale of
turbulence Ls in the k model of turbulence.

The time of vortex-ring formation is a qualitative characteristic to a certain extent. We assume that the
vortex ring is formed when the temperature at the flow centerline at the height where the hottest air is located
equals the atmospheric value. To qualitatively evaluate the time of formation of the vortex ring, we introduce the
parameter Θ(t):

Θ(t) = (T0 − Ta)/(Tmax − Ta).
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Fig. 5. Maximum flow velocity versus time: the solid and dashed curves refer to the gas-dynamic calculation
and calculation with allowance for turbulence, respectively.

Fig. 6. Maximum difference in temperature in the thermal and atmosphere versus time: the solid and dashed
curves refer to the gas-dynamic calculation and calculation with allowance for turbulence, respectively.

Here Tmax is the maximum temperature in the computational domain and Ta and T0 are the atmospheric tem-
perature and the temperature at the axis of symmetry at the height where T = Tmax. In this case, vanishing
of Θ(t) characterizes the time of vortex-ring formation, which, according to [11, 16], equals 4

√
R0/g. This estimate,

however, is obtained on the basis of the Euler equations. Figure 3 shows the dependences Θ(t) calculated by the
Euler and Reynolds equations. The quantity Θ(t) vanishes at t ≈ 40 sec in the first case and at t ≈ 50 sec in the
second case. This difference can be assumed to be insignificant; hence, the quantity 4

√
R0/g allows a rather exact

estimate of the time of vortex-ring formation.
The possible effect of turbulence on the height of thermal ascent can be evaluated using the data in Fig. 4.

The height of thermal ascent was assumed to be the vertical coordinate of the point z0 with the maximum vorticity.
It follows from Fig. 4 that the allowance for turbulence leads to an insignificant decrease in the height of thermal
ascent. It is of interest to compare the calculated heights of thermal ascent with the data obtained by other authors
for flows of the same class. This comparison is difficult because it is not clear what is understood as the “upper edge
of the thermal” [5]; nevertheless, the agreement of the data in the present work and those in [5] for the geometric
parameters of the thermal seems to be satisfactory.

It follows from Figs. 5 and 6 that the allowance for turbulence leads to a significant decrease in the maximum
values of velocity and temperature in the flow field, especially at later times, though their decrease in the flow as a
whole can be less significant. The maximum values of velocity and temperature fluctuations reach 30–40% of the
corresponding averaged values, which does not contradict the experimental data on turbulent flows available in the
literature [25].

The above-given data on the geometric parameters of the thermal, which were obtained by the Reynolds
equations and turbulence model and by the Euler equations, are rather close, which is caused by using a scheme with
low numerical viscosity in calculating the convection processes and the model of turbulence taking into account its
suppression in the vortex ring. Nevertheless, the allowance for turbulence is necessary, since it leads to significant
variation of local gas-dynamic parameters of the flow.

4. Calculation Results for Conditions of the Model Experiment. To verify that the model of
turbulence is adequate to the class of atmospheric flows considered, we solved the problem of the development of a
small-scale thermal, for which we used the data of [10] obtained in a series of full-scale experiments.

The test conditions were as follows. The experiments were performed at a height of 1890 m above the sea
level. A stoichiometric oxygen–methane mixture was enclosed into a thin Mylar envelope of radius of 5 m and
was placed at a height of 39.6 km above the ground level. A cable was placed at a distance of 20 m from the
center of the envelope. A frame with gauges that allowed obtaining the mean and turbulent parameters of the flow
was attached to the cable. The explosion was initiated by a detonating device at the center of the envelope. The
explosion cloud formed as a result of detonation passed through the gauges, which registered random variations of
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Fig. 7. Geometric size of the thermal formed due to combustion of the oxygen–methane mixture: the solid
curves show the calculated data, and the points refer to the first, second, and fourth experiments of [10].

Fig. 8. Convective flow velocity as the thermal passes along the gauges: the solid curve shows the calculated
data, and the points refer to the experimental data for various gauges in the third experiment of [10].

instantaneous values of temperature and velocity. Subsequent processing of experimental data allowed us to obtain
the mean velocity and temperature in the cloud, the value of temperature fluctuations and their spectrum, and the
micro- and macroscales of turbulence according to Taylor. Thus, the experimental data of [10] allow testing various
models of turbulence.

In numerical simulation of the experiments of [10], in addition to convection processes, which occur during
the ascent of the explosion cloud in the atmosphere, one should take into account the processes of detonation
and shock-wave propagation in the atmosphere. In the present work, we propose a simplified approach, where
the latter processes are not considered, and the result is assumed to be the formation of a thermal — uniformly
heated spherical volume where there is no motion and the pressure equals the atmospheric value. According to [10],
pressure equalization in the region disturbed by the explosion and, hence, thermal formation occur in 1 sec after
the time of ignition of the mixture. In the present work, the time of thermal formation is assumed to equal 0.8 sec.
According to the data of optical measurements, the initial radius of the thermal is 13 m and its temperature is
1370 K.

The geometric parameters (radius and height) of the ascending explosion cloud were determined from the
data of optical measurements. The following procedure was used to calculate them. At the initial time, special
markers were uniformly distributed over the entire volume of the hot sphere. The markers were weightless particles
whose velocity at subsequent times coincided with flow velocity at points where the markers were located. The
maximum and minimum values of the vertical coordinates of the markers were assumed to equal the heights of the
upper and lower edges of the cloud; the horizontal coordinates coincided with the cloud radius. The solid curve in
Fig. 7 and others shows the variation of the calculated geometric parameters of the cloud, and the points refer to
the experimental data of [10]. The agreement of the calculated and experimental data is quite satisfactory.

Figure 8 shows the calculated and experimental data for the convective flow velocity as the cloud passes along
the gauges in the third experiment of [10]. The calculated velocity maximum is lower than that in the experiment.
In addition, for t 6 2.5 sec, the calculated and experimental data are in qualitative agreement only, which can be
explained by the following reasons. First, in setting the initial data for the cloud of the detonating mixture, we
used the thermal approximation, i.e., ignored the detonation processes. Second, the equation of state for an ideal
gas was used for the oxygen–methane mixture.

Variation of the mean temperature T , its fluctuations 〈T ′2〉, and their ratio 〈T ′2〉/T is shown in Fig. 9. It is
possible to distinguish the core of the cloud and its wake. The temperature fluctuations inside the cloud are several
times lower than those at the cloud edges, since the turbulence inside the cloud is suppressed due to the centrifugal
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Fig. 10. Taylor microscale of temperature fluctuations as the thermal passes through the gauges: the solid and dashed
curves refer to the calculation and experiment of [10], respectively.
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forces and temperature gradient. It should be noted that the calculated intensity of temperature fluctuations as a
whole are in good agreement with the experimental data.

In the experiments, we also determined the Taylor microscale of turbulence λθ. First, we measured the time
microscale of turbulence according to Taylor τ ; then, in accordance with Taylor’s hypothesis, we determined the
spatial microscale λθ = uτ (u is the convective flow velocity). The dependence λθ(t) obtained, like in [16], with
the use of results of the theory of isotropic turbulence and then averaged over all gauges is plotted in Fig. 10 (the
calculated values of λθ are slightly higher than the experimental ones [10]).

It is also of interest to study the spectrum of temperature fluctuations, which can be obtained knowing the
averaged parameters of turbulence. In the present paper, we used the method for spectrum construction, which
was described in [16].

The spectra of temperature fluctuations averaged over all gauges at the times t = 2.8 and 3.6 sec are shown in
Fig. 11. Using the relations of [16], we can evaluate the integral scale of turbulence for temperature fluctuations Λθ.
As the thermal passes along the gauges at the times mentioned, we have Λθ = 1 and 0.8 m. At the same time,
the estimate for Λθ obtained in [10] are within the interval of 0.9–1.1 m. This agreement can be considered as
satisfactory.

Thus, the calculations yield rather realistic values of parameters of flow turbulence in the thermal. As is
indicated in [16], acceptable values of turbulence parameters can also be obtained using the locally equilibrium
approximation, but the influence of turbulence on gas-dynamic flow parameters is ignored here.

The proposed method for solving the Reynolds equations, which is based on splitting in terms of physical
processes and the use of a scheme with low numerical viscosity in calculating convection processes, and the model of
turbulence, which takes into account suppression of turbulent flows in the vortex ring, allow one to correctly describe
the processes of vorticity generation and transfer and obtain acceptable values of parameters of flow turbulence in
the thermal.

The authors are grateful to A. T. Onufriev for his attention to the work and valuable comments.
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